

08/03/2012 Page 1
Total Chars: 7307 Total Words: 1391
 HeelpBook (www.heelpbook.net)

SQL SERVER – REDUCING INDEX FRAGMENTATION

General Concepts

When you perform any data modification operations (INSERT, UPDATE, or DELETE statements) table
fragmentation can occur. When changes are made to the data that affect the index, index fragmentation
can occur and the information in the index can get scattered in the database.

Fragmented data can cause SQL Server to perform unnecessary data reads, so a queries performance
against a heavy fragmented table can be very poor. If you want to determine the level of
fragmentation, you can use the DBCC SHOWCONTIG statement. The DBCC SHOWCONTIG statement
displays fragmentation information for the data and indexes of the specified table or view.

The DBCC SHOWCONTIG statement cannot automatically show fragmentation of all the indexes on all the
tables in a database it can only work on one table at a time. You can write your own script to show
fragmentation of all the tables in a database or you can use the script below (this script shows
fragmentation of all the tables in the pubs database):

USE pubs

DECLARE @TableName sysname

DECLARE cur_showfragmentation CURSOR FOR

SELECT table_name FROM information_schema.tables WHERE table_type = 'base table'

OPEN cur_showfragmentation

FETCH NEXT FROM cur_showfragmentation INTO @TableName

WHILE @@FETCH_STATUS = 0

BEGIN

 SELECT 'Show fragmentation for the ' + @TableName + ' table'

 DBCC SHOWCONTIG (@TableName)

 FETCH NEXT FROM cur_showfragmentation INTO @TableName

END

CLOSE cur_showfragmentation

DEALLOCATE cur_showfragmentation

When you need to perform the same actions for all the tables in a database (when you need to show the
fragmentation of all the tables in a database, as in the script above), you can create cursor for this
purpose, or you can use the sp_MSforeachtable undocumented system stored procedure to accomplish
the same goal with less work. The following script shows fragmentation of all the tables in the pubs
database:

USE pubs

GO

EXEC sp_MSforeachtable @command1="print '?' DBCC SHOWCONTIG('?')"

Article: Reducing Index Fragmentation

Date: 08/03/2012

Posted by: HeelpBook Staff

Source: Link

Permalink: Link

http://heelpbook.altervista.org/2012/sql-server-reducing-index-fragmentation/
http://www.mssqlcity.com/Articles/Adm/index_fragmentation.htm
http://heelpbook.altervista.org/2012/sql-server-reducing-index-fragmentation/

SQL SERVER - REDUCING INDEX FRAGMENTATION 08/03/2012

08/03/2012 Page 2
Total Chars: 7307 Total Words: 1391
 HeelpBook (www.heelpbook.net)

GO

Keep in mind that the undocumented stored procedures could not be supported in the future SQL Server
versions. So, you can use the sp_MSforeachtable undocumented system stored procedure at your own
risk.

You can reduce fragmentation and improve read-ahead performance by using one of the following:

 Dropping and re-creating an index.
 Rebuilding an index by using the DBCC DBREINDEX statement.
 Defragmenting an index by using the DBCC INDEXDEFRAG statement.

Dropping and Re-creating an Index

This is a slowest way to reduce fragmentation, but dropping and re-creation of an index can provide best
performance. Because the leaf node of a nonclustered index contains a clustered index key if the table has
a clustered index, when a clustered index is deleted on a table that has nonclustered indexes, the
nonclustered indexes are all rebuilt as part of the DROP operation. So, when you create a clustered index
on a table with several secondary indexes all of the secondary indexes must be rebuilt so that the leaf
nodes contain the clustering key value instead of the row identifier. This can take significant time on a large
table.

So, if you need to drop and re-create both clustered and nonclustered indexes drop the nonclustered
indexes first and the clustered index last, and then create clustered index first and the nonclustered
indexes last.

The main disadvantages of this method to reduce fragmentation is that during dropping and recreating a
clustered index:

 An exclusive table lock is put on the table, preventing any table access by your users.
 A shared table lock is put on the table, preventing all but SELECT operations to be performed on it.

When you create a clustered index, the table will be copied, the data in the table will be sorted, and then
the original table will be deleted. So, you should have enough empty space to hold a copy of the data.

Rebuilding an Index

Rebuilding an index is a more efficient way to reduce fragmentation in comparison with dropping and re-
creating an index, this is because rebuilding an index is done by one statement which is easier than coding
multiple DROP INDEX and CREATE INDEXstatements.

To rebuild indexes, you can use the DBCC DBREINDEX statement.

The DBCC DBREINDEX is automatically atomic (automatically atomic means that the work is done by
one statement and you don't need to do anything with this statement to be atomic). Because the
work is done by one statement, it can take advantage of more optimizations with DBCC DBREINDEX than it
can with individual DROP INDEX and CREATE INDEX statements.

You can rebuild all the indexes on all the tables in your database periodically (for example, one time per
week at Sunday) to reduce fragmentation. The DBCC DBREINDEX statement cannot automatically rebuild
all of the indexes on all the tables in a database it can only work on one table at a time.

SQL SERVER - REDUCING INDEX FRAGMENTATION 08/03/2012

08/03/2012 Page 3
Total Chars: 7307 Total Words: 1391
 HeelpBook (www.heelpbook.net)

You can write your own script to rebuild all the indexes on all the tables in a database or you can use the
script below (the ind_rebuild stored procedure rebuilds all indexes with a fillfactor of 80 in every table in
the current database):

CREATE PROC ind_rebuild

AS

DECLARE @TableName sysname

DECLARE cur_reindex CURSOR FOR

SELECT table_name

 FROM information_schema.tables

 WHERE table_type = 'base table'

OPEN cur_reindex

FETCH NEXT FROM cur_reindex INTO @TableName

WHILE @@FETCH_STATUS = 0

BEGIN

 PRINT 'Reindexing ' + @TableName + ' table'

 DBCC DBREINDEX (@TableName, ' ', 80)

 FETCH NEXT FROM cur_reindex INTO @TableName

END

CLOSE cur_reindex

DEALLOCATE cur_reindex

GO

You can use the sp_MSforeachtable undocumented system stored procedure to accomplish the same goal
with less work. This script rebuilds all indexes with a fillfactor of 80 in every table in the pubs database:

USE pubs

GO

EXEC sp_MSforeachtable @command1="print '?' DBCC DBREINDEX ('?', ' ', 80)"

GO

During rebuilding a clustered index, an exclusive table lock is put on the table, preventing any table access
by your users, and during rebuilding a nonclustered index a shared table lock is put on the table, preventing
all but SELECT operations to be performed on it, you should schedule DBCC DBREINDEX statement during
CPU idle time and slow production periods.

Defragmenting an Index

SQL Server 2000 introduces a new DBCC INDEXDEFRAG statement to defragment clustered and
nonclustered indexes on tables and views. This statement defragments the leaf level of the index so that
the physical order of the index pages match the left-to-right logical order of the leaf nodes.

SQL SERVER - REDUCING INDEX FRAGMENTATION 08/03/2012

08/03/2012 Page 4
Total Chars: 7307 Total Words: 1391
 HeelpBook (www.heelpbook.net)

The DBCC INDEXDEFRAG statement will report to the user an estimated percentage completed every five
minutes and can be terminated at any point in the process, so that any completed work is retained.

The main advantage of using DBCC INDEXDEFRAG in comparison with DBCC DBREINDEX or with dropping
and re-creating indexes is that the DBCC INDEXDEFRAG is an online operation. This means that the DBCC
INDEXDEFRAG statement does not hold locks for a long time and thus will not block any running queries or
updates. As the time to defragment is related to the amount of fragmentation, you can use the DBCC
INDEXDEFRAG statement to reduce fragmentation if the index is not very fragmented.

For a very fragmented index, rebuilding (using DBCC DBREINDEX statement) can take less time. You can
defragment all the indexes on all the tables in your database periodically (for example, one time per
week at Sunday) to reduce fragmentation.

The DBCC INDEXDEFRAG statement cannot automatically defragment all of the indexes on all the tables in
a database; it can only work on one table and one index at a time. You can use the script below to
defragment all indexes in every table in the pubs database:

USE pubs

DECLARE @TableName sysname

DECLARE @indid int

DECLARE cur_tblfetch CURSOR FOR

SELECT table_name FROM information_schema.tables WHERE table_type = 'base table'

OPEN cur_tblfetch

FETCH NEXT FROM cur_tblfetch INTO @TableName

WHILE @@FETCH_STATUS = 0

BEGIN

DECLARE cur_indfetch CURSOR FOR

SELECT indid FROM sysindexes WHERE id = OBJECT_ID (@TableName) and keycnt > 0

OPEN cur_indfetch

FETCH NEXT FROM cur_indfetch INTO @indid

WHILE @@FETCH_STATUS = 0

BEGIN

 SELECT 'Derfagmenting index_id = ' + convert(char(3), @indid) + 'of the '

 + rtrim(@TableName) + ' table'

 IF @indid <> 255 DBCC INDEXDEFRAG (pubs, @TableName, @indid)

 FETCH NEXT FROM cur_indfetch INTO @indid

END

CLOSE cur_indfetch

DEALLOCATE cur_indfetch

 FETCH NEXT FROM cur_tblfetch INTO @TableName

END

CLOSE cur_tblfetch

DEALLOCATE cur_tblfetch

SQL SERVER - REDUCING INDEX FRAGMENTATION 08/03/2012

08/03/2012 Page 5
Total Chars: 7307 Total Words: 1391
 HeelpBook (www.heelpbook.net)

Though the DBCC INDEXDEFRAG, statement is an online operation, try to schedule it during CPU idle time
and slow production periods as other maintenance tasks.

