
 

Date: 04/05/2012                                                                                                                                                   Page: 1 
Total Chars: 2493 Total Words: 516 
   

 

EXCEL – VBA – REFERRING TO RANGES IN YOUR CODE 
 

Newcomers to VBA are often confused about how to refer to ranges on a worksheet. This confusion is 
somewhat justified, because VBA offers several different ways to refer to ranges. In this document I 
provide an overview of these techniques: 

o Referring to ranges directly  
o Referring to ranges by using the Cells method  
o Referring to ranges by using the Offset method  

Referring to ranges directly 

Perhaps the most common way to refer to a range on a worksheet is to specify the range directly. Here's an 
example that assigns the value 1 to range A1:C12 on Sheet1 in a workbook named MyBook: 

 

Workbooks("MyBook").Sheets("Sheet1").Range("A1:C12").Value = 1 

 

Notice that this is a fully qualified reference. This statement will work regardless of which sheet is active. If 
Sheet1 is the active sheet, the statement can be simplified as: 

 

Range("A1:C12").Value = 1 

 

If the range has a name, you can use the name in your statement: 

 

Range("myrange").Value = 1 

 

You can also refer to a range by specifying the upper left and the lower right cell. Here's an example that 
assigns a value to all cells in the range A1:D12 on the active worksheet. 

 

Range(Range("A1"), Range("D12")).Value = 99 

 

Referring to ranges by using the Cells method 

In Excel, the Range object has a method called Cells. Note that Cells is a method - not an object. When the 
Cells method is evaluated, it returns an object (specifically, a Range object). 

The Cells method takes two arguments: the row and the column. The following statement assigns the value 
1 to cell C2 on Sheet1: 

 

Worksheets("Sheet1").Cells(2,3).Value = 1 

 

Date: 04/05/2012 

Procedure: Excel - VBA - Referring To Ranges In Your Code 

Source: LINK 

Permalink: LINK 

Created by: HeelpBook Staff 

Document Version: 1.0 

 

 

 

http://heelpbook.altervista.org/2012/excel-vba-referring-to-ranges-in-your-code/
http://spreadsheetpage.com/index.php/tip/referring_to_ranges_in_your_vba_code/
http://heelpbook.altervista.org/2012/excel-vba-referring-to-ranges-in-your-code/


EXCEL - VBA - REFERRING TO RANGES IN YOUR CODE 04/05/2012 

 

Data: 04/05/2012                                                                                                                                                   Page: 2 
Total Chars: 2493 Total Words: 516 
   

You can also use the Cells method to refer to a larger range. The following statement assigns the value 1 to 
A1:J12 on the active worksheet: 

 

Range(Cells(1,1), Cells(12,10)).Value = 1 

 

In the preceding examples, the arguments for Cells were actual numbers. The advantage of using the Cells 
method becomes apparent when you use variables as the arguments. The subroutine below fills a 10X10 
range (rowwise) with consecutive numbers from 1 to 100. 

 

Sub FillRange() 

    Num = 1 

    For Row = 1 To 10 

        For Col = 1 To 10 

            Sheets("Sheet1").Cells(Row, Col).Value = Num 

            Num = Num + 1 

        Next Col 

     Next Row 

End Sub 

 

Referring to ranges by using the Offset method 

The Offset method is another useful way to refer to ranges. The Offset method returns a Range object, and 
takes two arguments. The first argument represents the number of rows to offset; the second represents 
the number of columns to offset. 

The following statement assigns the value 1 to the cell that is one row below cell C2 and two cells to the 
right of C2 (i.e., cell E3): 

  Range("C2").Offset(1,2).Value = 1 

 

The Offset method is most useful when the arguments are variables, rather than numbers. The subroutine 
below fills a 10X10 range (rowwise) with consecutive numbers from 1 to 100. 

Sub FillRange2() 

      Num = 1 

      For Row = 0 To 9 

          For Col = 0 To 9 

              Sheets("Sheet1").Range("A1").Offset(Row,Col).Value = Num 

              Num = Num + 1 

          Next Col 

      Next Row 

End Sub 


