
01/12/2011 Page 1
Total Chars: 2664 Total Words: 558
 HeelpBook (www.heelpbook.net)

Create an Array in VBA
You can declare an array to work with a set of values of the same data type.

An array is a single variable with many compartments to store values, while a typical variable has only

one storage compartment in which it can store only one value. Refer to the array as a whole when you

want to refer to all the values it holds, or you can refer to its individual elements.

For example, to store daily expenses for each day of the year, you can declare one array variable with

365 elements, rather than declaring 365 variables. Each element in an array contains one value. The

following statement declares the array variable curExpense with 365 elements.

By default, an array is indexed beginning with zero, so the upper bound of the array is 364 rather than

365.

Dim curExpense(364) As Currency

To set the value of an individual element, you specify the element's index. The following example

assigns an initial value of 20 to each element in the array.

Sub FillArray()

Dim curExpense(364) As Currency

Dim intI As Integer

For intI = 0 to 364

curExpense(intI) = 20

Next

End Sub

Changing the Lower Bound

You can use the Option Base statement at the top of a module to change the default index of the first

element from 0 to 1. In the following example, the Option Base statement changes the index for the

first element, and the Dim statement declares the array variable curExpense with 365 elements.

Option Base 1

Dim curExpense(365) As Currency

You can also explicitly set the lower bound of an array by using a To clause, as shown in the following

example.

Dim curExpense(1 To 365) As Currency

Dim strWeekday(7 To 13) As String

Article: Excel - Using Arrays in VBA

Date: 01/12/2011

Posted by: HeelpBook Staff

Source: Link

Permalink: Link

http://www.ozgrid.com/forum/showthread.php?t=61859
http://heelpbook.altervista.org/2011/excel-vba-how-to-use-array-variable/

Excel – How to use Array in VBA 01/12/2011

01/12/2011 Page 2
Total Chars: 2664 Total Words: 558
 HeelpBook (www.heelpbook.net)

Storing Variant Values in Arrays

There are two ways to create arrays of Variant values. One way is to declare an array of Variant data

type, as shown in the following example:

Dim varData(3) As Variant

varData(0) = "Claudia Bendel"

varData(1) = "4242 Maple Blvd"

varData(2) = 38

varData(3) = Format("06-09-1952", "General Date")

The other way is to assign the array returned by the Array function to a Variant variable, as shown in

the following example.

Dim varData As Variant

varData = Array("Ron Bendel", "4242 Maple Blvd", 38, _

Format("06-09-1952", "General Date"))

You identify the elements in an array of Variant values by index, no matter which technique you use to

create the array. For example, the following statement can be added to either of the preceding

examples.

MsgBox "Data for " & varData(0) & " has been recorded."

Excel – How to use Array in VBA 01/12/2011

01/12/2011 Page 3
Total Chars: 2664 Total Words: 558
 HeelpBook (www.heelpbook.net)

Using Multidimensional Arrays

In Visual Basic, you can declare arrays with up to 60 dimensions. For example, the following

statement declares a 2-dimensional, 5-by-10 array.

Dim sngMulti(1 To 5, 1 To 10) As Single

If you think of the array as a matrix, the first argument represents the rows and the second argument

represents the columns.

Use nested For...Next statements to process multidimensional arrays. The following procedure fills a

two-dimensional array with Single values.

Sub FillArrayMulti()

Dim intI As Integer, intJ As Integer

Dim sngMulti(1 To 5, 1 To 10) As Single

' Fill array with values.

For intI = 1 To 5

For intJ = 1 To 10

sngMulti(intI, intJ) = intI * intJ

Debug.Print sngMulti(intI, intJ)

Next intJ

Next intI

End Sub

