
Date: 26/04/2012 Page: 1
Total Chars: 8074 Total Words: 1666

EXCEL – STRING COMPARISON FUNCTION IN VBA

Types of string comparisons in VBA

 Binary String Comparison (Case sensitive) in VBA

For any formula If you want to compare two string in such a manner that each individual characters is
compared with its counterpart in a case sensitive manner (Ex. “This” is not equal to “this” because ‘T’ is not
equal to ‘t’), you can do either of the two things:

1. Declare the statement Option Compare Binary at the very onset of VBA code or
2. Specify the comparison to be made as Binary in the formula (as an argument)

The character byte order that would be followed in such case would be:

In case you were wondering why A has a lesser value than a, it is so because ‘A’ is represented by a lower
byte than ‘a’ and occurs earlier in the list when starting from 0. The binary comparison is the one that
VBA would use if nothing else has been explicitly specified.

 Text Comparison in VBA (Case insensitive comparison)

For any formula if you want to compare two string in such a manner that each individual characters is
compared with its counterpart in a case insensitive manner (Ex. “THis” is would be equal to “this” even
though some of the characters don’t have the same case as their counterparts in the other string), you can
do either of the two things:

1. Declare the statement Option Compare Text at the very onset of VBA code or
2. Specify the comparison to be made as Text in the formula (as an argument)

The order that would be followed in this case would be:

Date: 26/04/2012

Procedure: Excel - String Comparison Function in VBA

Source: LINK

Permalink: LINK (http://heelpbook.altervista.org/2012/excel-string-comparison-function-in-vba/)

Created by: HeelpBook Staff

Document Version: 1.0

http://www.databison.com/index.php/string-comparison-function-in-vba/
http://heelpbook.altervista.org/2012/excel-string-comparison-function-in-vba/
http://heelpbook.altervista.org/2012/excel-string-comparison-function-in-vba/

EXCEL - STRING COMPARISON FUNCTION IN VBA 26/04/2012

Data: 26/04/2012 Page: 2
Total Chars: 8074 Total Words: 1666

As you can see, ‘A’ is equal to ‘a’ in this case. This helps in comparing strings when they have the same
sequence of characters but each may have a case different from its counterpart.

VBA String Operators

 Wildcards * ? and #

There are three types of wildcards that can be used in VBA. These include:

 ? – Indicates any single character. This has to be repeated as many times as the number of
characters that you would like to enter as wildcard. (Ex. “?ip” can be any of the following – “Tip”,
“Hip” or “Lip”)

 * – Indicates zero or more characters in a sequence. You can use this is the number of wildcard
characters is not certain. (Ex – “*ike” can equate to any of the following “Like”, “Mike”, “Hike” or
“Strike”)

 # – Indicates a single digit from 0 to 9. Again, has to be repeated as many times as there are digits
that you would like to use as wildcards.

As we have seen above, the wildcards allows partial sub-strings to matched to strings while providing some
amount of flexibility. However there is a constraint – when you specify *, # or ?, you can not specify which
of the characters you would like to exclude from the list of characters that generate a positive match.

For example “?one” will generate a match for both “Bone” and “Tone”. However if you wanted it to
generate a match only for alphabets A, B and C and not for any other character, this method will not
suffice. However, there is a way – string patterns. Read on.

String Patterns

VBA provides the option to specify and narrow down the a list of values that can generate a positive match
when a compared with a wildcard. The same mechanism can also be used to exclude some other characters
from being matched. In the previous example, suppose we wanted to use only A,B and C as the matching
characters and not others we could have written “*[A-C]one” (which essentially means “(A or B or
C)+one”).

By enclosing the list in brackets [], we ensure that only those characters are used to return a positive
match. You hyphen (-) specifies that all the characters lying between the staring and the end character can
be used. You can also specify a custom list within the parenthesis such as [a,b,c,t,r] etc.

For example, both the below expressions would both evaluate to TRUE:

“this” Like “**a-z+his”
“this” Like “**s,t,u+his”

However the one shown below would evaluate to FALSE:

“this” Like “**x,y,x+his”

Now suppose rather than including a list of characters, what If you wanted to exclude a certain set? Well
you can specify an exclusion set by using the ! symbol within the bracket [!].

EXCEL - STRING COMPARISON FUNCTION IN VBA 26/04/2012

Data: 26/04/2012 Page: 3
Total Chars: 8074 Total Words: 1666

For example, you can write *[!a-c] to exclude the characters a,b and c from being used as replacements in
the wildcard.

So for example the following would evaluate to FALSE.

“this” Like “**!s-u+his”

String comparison and search functions in VBA

 Comparing strings in VBA using =, > and < operators

The simplest way to compare two strings is use =, > and < operators. By default VBA will use the binary
comparison (read about binary and text comparisons above). However, if you want to do a case insensitive
comparison, you will need to explicitly set the comparison option to Text as shown in the example below.

If the option is not set (or is set to Option Compare Binary), the following code will show FALSE because
the binary equivalent of “Text” is not the same as “this”.

Sub match_strings()

MsgBox "This" = "this"

End Sub

However then the binary comparison has been explicitly set to Text, the code shows TRUE

Option Compare Text

Sub match_strings()

MsgBox "This" = "this"

End Sub

 String Comparison in VBA using INSTR

INSTR VBA function can be used when you would like to find the position of a sub-string within another
string. The format of the INSTR function is:

INSTR(“position_to_start”, “string_to_search”, “string_to_find”,”comparison_type”)

Where:

 position_to_start = The position where you would like to function to begin the comparison
(optional)

 string_to_search = The string which is being searched
 string_to_find = The string or sub-string which needs to be located in the above string
 comparison_type = Specifies whether the comparison should be carried out as a binary (byte

level, case sensitive) or text (byte level, case insensitive) (optional)

The function returns the position of the string_to_find within the string_to_search starting from the
first position. If it is not able to locate the sub-string, it will return 0. If any of the strings is NULL, it returns
a NULL.

EXCEL - STRING COMPARISON FUNCTION IN VBA 26/04/2012

Data: 26/04/2012 Page: 4
Total Chars: 8074 Total Words: 1666

If the string_to_find is a zero length (say “”), the function would return the position_to_start numerical
value.

Example:

INSTR(5, “This is a string”, “string”)
would give the result as 11 (the given sub-string starts at position 11).

INSTR(5, “This is a string”, “String”)
would give the result as 0 (the given substring could not be located).

INSTR(5, “This is a string”, “”)
would give the result as 5 (the given substring is of 0 length and hence return the number specified as the
position_to_start).

INSTR(5, “This is a string”, “”)
would give the result as 5 (the given substring is of 0 length and hence return the number specified as the
position_to_start).

 String Comparison in VBA using LIKE

Jon Walkenbach highlighted this function in one of his blog posts that find the existence of a word within
another. The code was originally written by Rick Rothstein (MVP – VB). The beauty of this function is that’s
its just one line of code (oftentimes you will see coders (including me) write code that runs into several
lines to achieve similar results. You may want to take a minute to study the function (to be honest, it took
me a while to get the entire thing right).

You may also want to make a few changes to see how the LIKE function, when used with operators and
string patterns, actually works.

Function ExactWordInString(Text As String, Word As String) As Boolean

ExactWordInString = " " & UCase(Text) & " " Like "*[!A-Z]" & UCase(Word) & "[!A-

Z]*"

End Function

The spaces before and after the Text string are provided so that the searched for word can be identified
when it is the first or last word in the text string. The first word would not have a character in front of it
that the “*[!A-Z]” part of the Like pattern string could match.

 Comparing strings in VBA using strComp

StrComp VBA function can be used when you would like to compare two strings and return a value
indicating whether both are identical or which one is greater/smaller than the other. The syntax of the VBA
StrComp function is:

StrComp(“first_string_to_compare”, “second_string_to_compare”,“comparison_type”)

http://spreadsheetpage.com/index.php/tip/is_a_particular_word_contained_in_a_text_sring/
http://spreadsheetpage.com/index.php/tip/is_a_particular_word_contained_in_a_text_sring/

EXCEL - STRING COMPARISON FUNCTION IN VBA 26/04/2012

Data: 26/04/2012 Page: 5
Total Chars: 8074 Total Words: 1666

Where:

 first_string_to_compare = The first string that you would like to compare.
 second_string_to_compare = The second string that you would like to compare.
 string_to_find = The string or sub-string which needs to be located in the above string
 comparison_type = Specifies whether the comparison should be carried out as a binary (byte

level, case sensitive) or text (byte level, case insensitive) (optional)

Please bear in mind that if the comparison type is not explicitly specified within the function, the value
specified in the Option Compare Statement at the module level will be used.

The function returns:

 -1 when second_string_to_compare is greater than first_string_to_compare
 0 when second_string_to_compare is equal to the first_string_to_compare
 1 when second_string_to_compare is less than first_string_to_compare
 Null when either of the strings is NULL

For example the following function would show -1 if no comparison_type is explicitly specified.

Sub match_strings()

MsgBox StrComp("This", "this")

End Sub

However when we explicitly specify the comparison type to be text, the function would show 0.

Sub match_strings()

MsgBox StrComp("This", "this", 1) 'Compare as text while ignoring case

End Sub

A Few Generic String operations in VBA

Define a string in VBA
Dim myStr as String

Assign value to a string in VBA
myStr = “This is a string”

Define an Array of strings in VBA
Dim myStr() as String

Convert to string
Cstr(Expresion) where expression is a string, a string literal, a string constant, a string variable or a string
Variant

Converting strings to uppercase
UCase(myStr)

Converting strings to lowercase
LCase(myStr)

