
 [image:]

 Excel - String Comparison Function in VBA

 Types of string comparisons in VBA

 	
 Binary String Comparison (Case sensitive) in VBA

 For any formulaIfyou want to compare two string in such a manner that each individual characters is compared with its counterpart in a case sensitive manner (Ex. “This” is not equal to “this” because‘T’is not equal to‘t’), you can do either of the two things:

 1. Declare the statementOption CompareBinaryat the very onset ofVBAcode or

 2. Specify the comparison to be made asBinaryin the formula (as an argument)

 The character byte order that would be followed in such case would be:

 [image:]

 In case you were wondering whyAhas a lesser value thana, it is so because‘A’is represented by a lower byte than‘a’and occurs earlier in the list when starting from0. Thebinary comparisonis the one thatVBAwould use if nothing else has been explicitly specified.

 	
 Text Comparison in VBA (Case insensitive comparison)

 For anyformulaif you want to compare two string in such a manner that each individual characters is compared with its counterpart in a case insensitive manner (Ex. “THis” is would be equal to “this” even though some of the characters don’t have the same case as their counterparts in the other string), you can do either of the two things:

 1. Declare the statementOption Compare Textat the very onset ofVBAcode or...

 2. Specify the comparison to be made asTextin the formula (as an argument)

 The order that would be followed in this case would be:

 [image:]

 As you can see,‘A’is equal to‘a’in this case. This helps in comparing strings when they have the same sequence of characters but each may have a case different from its counterpart.

 VBA String Operators

 	
 Wildcards * ? and #

 There are three types of wildcards that can be used inVBA. These include:

 	?– Indicates any single character. This has to be repeated as many times as the number of characters that you would like to enter as wildcard. (Ex. “?ip” can be any of the following – “Tip”, “Hip” or “Lip”)

 	*– Indicates zero or more characters in a sequence. You can use this is the number of wildcard characters is not certain. (Ex – “*ike” can equate to any of the following “Like”, “Mike”, “Hike” or “Strike”)

 	#– Indicates a single digit from 0 to 9. Again, has to be repeated as many times as there are digits that you would like to use as wildcards.

 As we have seen above, the wildcards allows partial sub-strings to matched to strings while providing some amount of flexibility. However there is a constraint – when you specify *, # or ?, you can not specify which of the characters you would like to exclude from the list of characters that generate a positive match.

 For example “?one” will generate a match for both “Bone” and “Tone”. However if you wanted it to generate a match only for alphabets A, B and C and not for any other character, this method will not suffice. However, there is a way – string patterns. Read on.

 String Patterns

 VBA provides the option to specify and narrow down the a list of values that can generate a positive match when a compared with a wildcard. The same mechanism can also be used to exclude some other characters from being matched. In the previous example, suppose we wanted to use only A,B and C as the matching characters and not others we could have written “*[A-C]one” (which essentially means “(A or B or C)+one”).

 By enclosing the list in brackets [], we ensure that only those characters are used to return a positive match. You hyphen (-) specifies that all the characters lying between the staring and the end character can be used. You can also specify a custom list within the parenthesis such as [a,b,c,t,r] etc.

 For example, both the below expressions would both evaluate toTRUE:

 “this” Like “*[a-z]his”

 “this” Like “*[s,t,u]his”

 However the one shown below would evaluate toFALSE:

 “this” Like “*[x,y,x]his”

 Now suppose rather than including a list of characters, whatIfyou wanted to exclude a certain set? Well you can specify an exclusion set by using the ! symbol within the bracket [!]. For example, you can write *[!a-c] to exclude the characters a,b and c from being used as replacements in the wildcard.

 So for example the following would evaluate toFALSE.

 “this” Like “*[!s-u]his”

 String comparison and search functions in VBA

 	
 Comparing strings in VBA using =, > and < operators

 The simplest way to compare two strings is use =, > and < operators. By default VBA will use the binary comparison (read about binary and text comparisons above). However, if you want to do a case insensitive comparison, you will need to explicitly set the comparison option to Text as shown in the example below.

 If the option is not set (or is set to Option Compare Binary), the following code will show FALSE because the binary equivalent of “Text” is not the same as “this”.

 Sub match_strings()
MsgBox "This" = "this"
End Sub

 However then the binary comparison has been explicitly set to Text, the code shows TRUE

 Option Compare Text
Sub match_strings()
MsgBox "This" = "this"
End Sub

 	
 String Comparison in VBA using INSTR

 INSTR VBAfunction can be used when you would like to find the position of asub-stringwithin another string. The format of theINSTRfunction is:

 INSTR(“position_to_start”, “string_to_search”, “string_to_find”,”comparison_type”)

 Where:

 	position_to_start= The position where you would like to function to begin the comparison (optional)

 	string_to_search= The string which is being searched

 	string_to_find= The string orsub-stringwhich needs to be located in the above string

 	comparison_type= Specifies whether the comparison should be carried out as a binary (byte level, case sensitive) or text (byte level, case insensitive) (optional)

 The function returns the position of thestring_to_findwithin thestring_to_searchstarting from the first position. If it is not able to locate thesub-string, it will return0. If any of the strings isNULL, it returns aNULL.

 If the string_to_find is a zero length (say “”), the function would return theposition_to_startnumerical value.

 Example:

 INSTR(5, “This is a string”, “string”)

 would give the result as 11 (the given sub-string starts at position 11).

 INSTR(5, “This is a string”, “String”)

 would give the result as 0 (the given substring could not be located).

 INSTR(5, “This is a string”, “”)

 would give the result as 5 (the given substring is of 0 length and hence return the number specified as the position_to_start).

 INSTR(5, “This is a string”, “”)

 would give the result as 5 (the given substring is of 0 length and hence return the number specified as the position_to_start).

 	
 String Comparison in VBA using LIKE

 Jon Walkenbachhighlighted this function in one of his blog posts that find theexistence of a word within another. The code was originally written byRick Rothstein(MVP – VB). The beauty of this function is that’s its just one line of code (oftentimes you will see coders (including me) write code that runs into several lines to achieve similar results. You may want to take a minute to study the function (to be honest, it took me a while to get the entire thing right).

 You may also want to make a few changes to see how theLIKEfunction, when used with operators and string patterns, actually works.

 Function ExactWordInString(Text As String, Word As String) As Boolean
ExactWordInString = " " & UCase(Text) & " " Like "*[!A-Z]" & UCase(Word) & "[!A-Z]*"
End Function

 he spaces before and after the Text string are provided so that the searched for word can be identified when it is the first or last word in the text string. The first word would not have a character in front of it that the “*[!A-Z]” part of the Like pattern string could match.

 	
 Comparing strings in VBA using strComp

 StrCompVBAfunctioncan be used when you would like to compare two strings and return a value indicating whether both are identical or which one is greater/smaller than the other. The syntax of theVBAStrComp function is:

 StrComp(“first_string_to_compare”, “second_string_to_compare”,“comparison_type”)

 Where:

 	first_string_to_compare= The first string that you would like to compare.

 	second_string_to_compare= The second string that you would like to compare.

 	string_to_find= The string or sub-string which needs to be located in the above string

 	comparison_type= Specifies whether the comparison should be carried out as a binary (byte level, case sensitive) or text (byte level, case insensitive) (optional)

 Please bear in mind that if the comparison type is not explicitly specified within the function, the value specified in the Option Compare Statement at the module level will be used.

 The function returns:

 	-1 whensecond_string_to_compareis greater thanfirst_string_to_compare

 	0 whensecond_string_to_compareis equal to thefirst_string_to_compare

 	1 whensecond_string_to_compareis less thanfirst_string_to_compare

 	Null when either of the strings isNULL

 For example the following function would show -1 if no comparison_type is explicitly specified.

 Sub match_strings()
MsgBox StrComp("This", "this")
End Sub

 However when we explicitly specify the comparison type to be text, the function would show 0.

 Sub match_strings()
MsgBox StrComp("This", "this", 1) 'Compare as text while ignoring case
End Sub

 A Few Generic String operations in VBA

 Define a string in VBA

 Dim myStr as String

 Assign value to a string in VBA

 myStr = “This is a string”

 Define an Array of strings in VBA

 Dim myStr() as String

 Convert to string

 Cstr(Expresion) where expression is a string, a string literal, a string constant, a string variable or a string Variant

 Converting strings to uppercase

 UCase(myStr)

 Converting strings to lowercase

 LCase(myStr)

 Permalink:http://heelpbook.altervista.org/2012/excel-string-comparison-function-in-vba/

 Source:http://www.databison.com/index.php/string-comparison-function-in-vba/

 Language: English

 Date: 26/04/2012

OEBPS/Images/epub.png
Seelphooic” M-

OEBPS/Images/vba-option-binary-compare.png
A<B<E<Z<a<b<e<z<A<E<@<a<é<g

OEBPS/Images/vba-option-text-compare.png
(A=a) < (A=3) < (B=b) < (E=e) < (E=8) < (Z=2) < (@=0)

